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Abstract. We have developed a scaling theory that describes the conformations of weak star-branched
polyelectrolytes in dilute solutions. The dependences of the overall star size on the number of branches and
on the ionic strength of the solution (tuned by the addition of low molecular weight salt) are analyzed. The
intrinsic structure of the polyelectrolyte stars in salt-free and salt-added solutions is discussed in terms of
concentration and elastic blobs. In contrast to neutral stars, the swollen corona of the polyelectrolyte star
consists of blobs which are not closely packed. We have shown that the size of star polyelectrolytes is less
sensitive to the variation in the ionic strength than the size of linear polyelectrolytes. The effects of the
ionization-recombination balance in the star polyelectrolyte were taken into account. For polyelectrolytes
with small ionization constant, the size of the star depends nonmonotonically on the number of branches
and on the ionic strength of the solution due to recombination of counterions with charged monomers.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 61.25.Hq Macromolecular and polymer
solutions; polymer melts; swelling

1 Introduction

Currently, the general picture of polyelectrolyte solutions
is still far from complete [1,2]. The main difficulties which
arise in the theoretical analysis of solutions of charged
macromolecules are related to the long-range character
of Coulomb interactions and to the essentially nonlin-
ear character of screening of large (and highly charged)
polyions by small mobile counterions. The latter is mani-
fested in the failure of the Debuy-Hückel approximation in
application to the solution of polyelectrolytes, especially
at low salt concentrations.

The interest in branched polyelectrolytes is initiated
by both theoretical and practical reasons. In practice, the
branched polyelectrolytes play a role of predecessors or
fragments of polyelectrolyte gels. From a theoretical point
of view, the properties of branched polymers and poly-
electrolytes are different from those of their linear analogs
because of the presence of an additional structural degree
of freedom, i.e. the degree of branching. Variation in the
degree of branching leads to a continuous change in the
properties of branched macromolecules from nearly linear-
like chains to soft nano-particles. In addition, some impor-
tant biological polymers (for example, polysacharides) can
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be considered as branched weak polyelectrolytes [3]. Thus,
investigation of the branched polyelectrolytes is also rele-
vant for biophysical problems.

The simplest representative of regularly branched
polymers is a star-branched macromolecule. Star-like
polymers can also serve as a model for block copolymer
micelles [4–6].

In our previous paper [7] we have analyzed conforma-
tions of star-branched polyelectrolytes as a function of the
number of branches in dilute and semi-dilute salt-free solu-
tions. In both systems, the screening of Coulomb interac-
tions was provided by the counterions only. In this analysis
we employed the analogy between charged branched poly-
mers and polyelectrolyte brushes [8,9] as well as the idea
of nonlinear screening in the macroion solution [10]. The
charge of the macromolecule was assumed to be quenched,
which corresponds to the case of strongly dissociating
ionogenic groups in the chains.

The goal of the present paper is to extend our consid-
eration to a salt-added solution and to analyze the effect
of the ionic strength on the dimensions and intrinsic struc-
ture of the polyelectrolyte stars.

We also take into account the balance of the disso-
ciation and recombination of charged monomers with the
counterions. This process is most important for weak poly-
electrolytes. As we see below, the interplay between the
branched architecture and the dissociation-recombination
equilibrium results in qualitatively novel features in the
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Fig. 1. Polyelectrolyte star with f branches; N is the number
of monomer per branch.

behavior of branched polyelectrolytes in comparison to
their linear analogs.

The paper is organized as follows. In Section 2 we in-
troduce our model of star-branched polymers and poly-
electrolytes and summarize the basic results for uncharged
star polymers. In Section 3 we discuss the conformation of
star-branched polyelectrolyte in a salt-free solution, focus-
ing on the intrinsic structure of the macromolecule. Sec-
tion 4 contains the analysis of conformational changes in a
star polyelectrolyte induced by the addition of salt in the
bulk solution. In Section 5 we consider stars with the an-
nealed charge, i.e. we take into account the recombination-
dissociation balance. Finally, Section 6 contains discussion
and comparison with the available experimental data.

2 Star-branched polymers
and polyelectrolytes

2.1 Model

In this section we introduce our model and discuss shortly
the conformations of neutral star polymers following the
lines of references [11–14].

We consider a dilute solution of star-branched macro-
molecules consisting of f arms each containing N
monomer units (Fig. 1). We assume that the fraction
α of charged monomer units in the chain is small and
the Bjerrum length lB = e2/kBTε, which characterizes
the strength of the Coulomb interaction is of the order
of a monomer unit length a. Here, e is the elementary
charge, ε is the dielectric constant of the solvent, T is
the temperature and kB is the Boltzmann constant. The
condition of weak charging implies that the energy of
the Coulomb repulsion of any two neighboring (along the
chain) charged monomers is much smaller than kBT , i.e.
α � (a/lB)2 ∼= 1. We consider an intrinsically flexible
polyelectrolyte, i.e. the “bare” persistence length A of cor-
responding uncharged polymer is assumed to be of order
of the monomer unit length a. As both conditions of weak
charging and intrinsic flexibility apply, the Coulomb inter-
actions do not lead to local stiffening of the star branches.

The total charge of the star-polyion is equal to
Q = efαN . Due to the electroneutrality condition, the
solution contains also counterions which, in total, compen-
sate the overall charge of star-branched polyions. In this
section we assume that no salt is added to the solution.
Correspondingly, in the limit of zero polymer concentra-
tion, the Debye screening length tends to infinity.

The non-electrostatic, short-range interactions be-
tween the uncharged units are described by the dimen-
sionless second, v, and the third, w, virial coefficients. The
contribution of binary contacts is determined by the sec-
ond virial coefficient, v, which grows linearly with tem-
perature and vanishes in the θ-point, v ∼= (T − θ)/T . The
contribution of ternary contacts is described by the third
virial coefficient, w, which is virtually independent of T
and is of the order of unity.

For simplicity, we assume that the non-electrostatic bi-
nary interactions between the uncharged units are weak,
namely, the solvent is a θ-solvent. This assumption is rea-
sonable because:

(i) the solubility of many synthetic polyelectrolytes in
water (or other polar solvents) is ensured by the presence
of charges on the chains, while for uncharged monomers,
the solvent is marginally good or even poor;

(ii) in strongly branched polymers the repulsive short-
range ternary interactions between uncharged monomers
play an important role providing swelling of the branched
chains in a θ-solvent [11–14].

2.2 Neutral stars

We start with a short review of the main results [11–15] on
neutral stars under both, θ- and good solvent conditions.

The short-range repulsive interactions between units
of different arms of the star lead to the extention of the
arms in radial direction with respect to the dimension of
isolated linear chains with the same number of monomers
N . The equilibrium star dimension R(f) is given by

R(f) ∼=

{
N1/2f1/4a θ-solvent
N3/5v1/5f1/5a good solvent.

(1)

Because of the branched architecture of the molecule, the
average intramolecular concentration of monomers is suf-
ficiently large so that even under the θ-conditions, the
repulsion due to ternary contacts ensures the swelling of
the branches with respect to their Gaussian dimensions.
The effect is comparatively weak and is manifested only
at a relatively large number of branches (i.e., for highly
branched stars).

Equation (1) can be obtained by applying the mean
field arguments. It results from the balance of the con-
formational free energy penalty for the extension of all f
branches of the star,

Fconf (R)/kBT ∼= fR2/Na2 (2)

and the free energy of short-range interactions between
monomers (pair and ternary contacts),

Fconc(R)/kBT ∼= va3(fN)2/R3 + (fN)3a6/R6.
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The intrinsic structure of the star polymer can be visu-
alized by employing the blob picture according to which
the neutral star is envisioned as a system of closely packed
concentric spherical shells of blobs. The blob size is equal
to the correlation length ξc which is determined by the
local concentration of monomers (“concentration” blob).
Locally, the star polymer is considered as a semi-dilute
polymer solution of concentration c(r) and the relation-
ships between the local concentration and the correlation
length are given by ξc ∼= (ca3)−1a or ξc ∼= (ca3)−3/4v−1/4a
for θ- or good solvent conditions, respectively [16]. (Here
and below r is the distance from the center of the star.)
The chain part inside the blob retains the unperturbed
Gaussian or the excluded volume statistics so that the
number of monomers g in a blob is related to its size as
ξ ∼= g1/2a or ξ ∼= g3/5v1/5a, respectively. Each branch
of the star contributes one blob to each concentric shell.
The condition of close packing of the blobs in the shell
of radius r implies the radial dependence of the blob size,
ξc(r) ∼= rf−1/2, and the monomer density decay as

c(r) ∼= a−3

{
f1/2(r/a)−1 θ-solvent
f2/3v−1/3(r/a)−4/3 good solvent.

(3)

The normalization of the density profile described by
equation (3) results in the same equation (1) for the over-
all star size that follows from the mean field arguments.

3 Polyelectrolyte star in salt-free solution

When the fraction of charged monomers in the star poly-
electrolyte is small, the Coulomb interaction does not play
an important role. As a result, the equilibrium conforma-
tion of the star is determined by the short-range repulsion
between monomers (the so-called quasi-neutral behavior)
and described by equations (1, 3).

If, however, the fraction of charged monomers is suffi-
ciently large, the Coulomb repulsion between the charges
results in an additional extension of the star branches in
the radial direction. The equilibrium size of the star can
be obtained by the balance of the energy of electrostatic
repulsion

FCoulomb/kBT ∼= lB(αfN)2/R

and conformational free energy, equation (2), to give

R(f) ∼= Nα2/3(lB/a)1/3f1/3a. (4)

According to equation (4), all the branches in the polyelec-
trolyte star are extended proportionally to their degree of
polymerization N (similar to a linear polyelectrolyte with
the end-to-end distance R(f = 1) ∼= Nα2/3(lB/a)1/3a
[17]), while the additional inter-arm Coulomb repulsion
is described by the prefactor f1/3. Comparison of equa-
tions (1, 4) shows that the long-range Coulomb repulsion
causes stronger extension of the branches (with respect to
the size of an isolated linear chain) than the short-range
repulsion; the exponent in the f -dependence for a charged
star size is noticeably larger than that for a neutral one.

Deriving equation (4) we have assumed that there is
no screening of Coulomb interaction inside the star. This
assumption can be justified in a dilute solution, where the
average concentration of counterions is so small that the
corresponding screening length is much larger than the
star size.

It is remarkable, however, that according to equa-
tion (4), the size of a polyelectrolyte star grows with an
increase in the number of branches in the star f more
slowly than the total charge of the star Q ∼ f . As a re-
sult, at large f the approximation of free counterions is
not valid anymore and equation (4) fails. We expect that
at large f , the star retains most of its counterions so that
local concentration of counterions inside the star becomes
much larger than the average concentration in the solu-
tion. This idea of charge renormalization has been pro-
posed first for charged colloidal particles in salt-free solu-
tions [10] and extended later to polyelectrolyte brushes
[8,9], charged block-copolymer micelles [4–6] and
branched polyelectrolytes [7]. Here we present only the
result, while the detailed discussion can be found in [8,10]
and (for the particular case of polyelectrolyte stars) in [7].

Because of the balance between the translational en-
tropy of counterions and the Coulomb attraction of the
counterions to the polyion, the counterions are never
smeared uniformly in the volume of the solution but are
localized preferentially in the region occupied by the star
polyion. The number of counterions retained inside the
star is determined by the ratio of the “bare” charge of
the star, Q = efαN , and its size R. At Q � eR/lB, the
counterions are essentially free and the fraction of coun-
terions localized inside the star is (in the dilute limit)
small. This is the case for stars with small number of
branches for which equation (4) is applicable. In the oppo-
site limit, Q� eR/lB, corresponding to many-arm stars,
most of the counterions are trapped inside the star. In
this regime, the intra-star Coulomb repulsion is strongly
screened by the counterions and it is the osmotic pres-
sure of counterions inside the star that gives the main
contribution to the stretching force causing the swelling
of the star branches. The balance between this osmotic
force, R2∆π/kBT ∼= fαN/R, and the elastic force in the
extended branches, −∂Fconf(R)/∂R, (where the confor-
mational freee energy Fconf (R) is given by equation (2))
results in the following dependence for the star size,

R(f) ∼= Nα1/2a. (5)

The most remarkable feature of the many-arm stars is
virtual independence (within the accuracy of a power law)
of the star size of the number of branches f .

The crossover between the unscreened and the
screened stars (referred below as “osmotic” stars) cor-
responds to the crossover between equations (4, 5) and
occurs at f ∼= f∗ where

f∗ ∼= α−1/2(lB/a)−1. (6)

We see that only if the branches are weakly charged,
α � 1, then f∗ � 1 and the unscreened regime can be
observed.
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As we see from equations (4, 5), both in the regime of
unscreened Coulomb repulsion and in the osmotic regime,
the branches of the polyelectrolyte star are extended pro-
portionally to the number of monomers per branch. This
implies that the monomer density decay in the radial di-
rection is proportional to ∼ r−2, or more explicitly,

c(r) ∼= a−3

f2/3α−2/3(lB/a)−1/3(r/a)−2 f � f∗

fα−1/2(r/a)−2 f � f∗.
(7)

Equation (7) implies uniform extension of the branches
and has been also confirmed by the more detailed SCF
calculations in [18].

3.1 Blob picture

In the frame of the blob picture, each branch can be en-
visioned as a string of Pincus stretching blobs [19] of con-
stant size

R(f) ∼= (N/g)ξ(f),

where the number of monomers per blob is g ∼= (ξ/a)2.
The size ξ(f) of each blob is inversely proportional to
the local tension in the branch provided by the force of
Coulomb repulsion or by osmotic pressure of counterions
and is given by [7]

ξ(f) ∼=

α−2/3f−1/3(lB/a)−1/3a f � f∗

α−1/2a f � f∗.
(8)

In contrast to blobs in a neutral star, these blobs are not
closely packed and their size does not depend on r. At
f = 1, we arrive at a familiar result [17] for an individ-
ual polyelectrolyte chain, ξ ∼= ξ0 ∼= α−2/3(lB/a)−1/3a.
Increases in f lead to a decrease in ξ. At f < f∗, the
unscreened Coulomb repulsion between branches leads to
the reduction in ξ as ξ = ξ0f

−1/3. However, at f � f∗,
screening of the inter-branch repulsions by the counterions
prevents further decreases in ξ, and the size of electrostatic
blob becomes independent of f . Here, the local structure
of the branch is characterized by the relationship “one
charge per blob”.

One can get a complementary interpretation of ξ(f)
in the osmotic regime by employing the concept of intrin-
sic screening length, κ−1

i . We define κ−1
i as κ2

i = lBci,
where ci(r) is the average concentration of counterions at
distance r from the center of the star.

In the osmotic regime, i.e. at f � f∗, the Coulomb
repulsion inside the star is screened by counterions and
the star is localy electroneutral on the scales larger than
κ−1
i , provided that κ−1

i � R(f).
Hence, we can apply the local electroneutrality approx-

imation [21], according to which ci(r) ∼= αc(r). Corre-
spondingly, we get with the account of equation (7) that
κ2
i (r)

∼= fα1/2(lB/a)r−2, i.e. the local screening length
grows with the distance from the star center as κ−1

i (r) ∼ r.
As the Coulomb interactions between the branches are

unscreened on scales smaller than κ−1
i , the number of

Fig. 2. The blob picture of a polyelectrolyte star with a
quenched fraction of charged monomers in a salt-free solu-
tion (a) and in a salt-added solution (b, c); Figure (b) corre-
sponds to the range of salt concentration where ρ(f)� rs(f)
or ρ(f)� κ−1

s in cases f � f∗ and f � f∗, respectively. The
outermost parts of chains consisting of blobs of constant size
ξ0 at r ≥ r∗ are not shown.

branches participating in this unscreened repulsion can
be estimated as κ−2

i (r)f/r2 ∼= f∗, i.e. coincides with a
number of branches f∗ in the star at the threshold of
the osmotic regime. Each such branch contributes a seg-
ment of n(r) monomers into the screening volume κ−3

i (r).
The balance of Coulomb repulsion of f∗αn(r) charged
monomers localized within a volume κ−3

i (r) with the con-
formational entropy losses due to stretching of the chains,
f∗κi(r)

−2/n(r)a2, gives n(r) ∼= κ−1
i (r)α−1/2a−1. Thus,

we arrive at the size of the electrostatic blob ξ ∼= α−1/2a.

Intrinsically, the polyelectrolyte star consists of two re-
gions, Figure 2a (compare [20]). In the outer region, the
extension of branches is determined by the Coulomb re-
pulsion of charged monomers or/and by the osmotic pres-
sure of counterions so that the branches are uniformly
extended and are envisioned as the strings of blobs of
constant size given by equation (8). The monomer den-
sity profile in this region is described by equation (7). In
the inner (core) region, the local monomer density is suffi-
ciently large and the non-electrostatic short-range interac-
tions (ternary contacts under θ-condition) determine the
local correlations. Hence, the structure of the core coin-
cides with the structure of the neutral θ-star: the blobs are
closely packed, their size grows with r as ξ ∼= rf−1/2, while
the monomer density decreases according to equation (3).
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Fig. 3. The diagrams of states of a polyelectrolyte star with a
quenched fraction of charged monomers: (a) in a salt-free solu-
tion; (b) in a salt-added solution, α � N−3/4(lB/a)−1/2. The
regions of the diagram correspond to the star: (I) dominated
by unscreened Coulomb repulsion of branches, (II) screened
due to trapped counterions (osmotic regime), (III) dominated
by non-electrostatic interactions between uncharged monomers
(quasi-neutral regime), (IV) screened predominantly by co- and
counterions of added salt.

The radius ρ of the θ-core can be determined from
the condition of the crossover between the sizes of the
concentration and the electrostatic blobs, ξ(f) ∼= f−1/2r,
to give

ρ(f) ∼=

af1/6α−2/3(lB/a)−1/3 f � f∗

af1/2α−1/2 f � f∗.
(9)

The condition ρ(f) ∼= R(f) determines the boundary
between the polyelectrolyte regimes dominated by the
Coulomb interaction or the osmotic pressure of counte-
rions (at f � f∗ or f � f∗, respectively) and the
regime of the quasi-neutral behavior of a star. Note, that
in the osmotic regime the core radius ρ(f) grows with f
while R(f) ∼= const(f). Thus, an increase in the num-
ber of branches results in the transition to the quasi-
neutral regime at f ∼= (αN)2. In contrast, in the regime
of predominance of the Coulomb repulsion, the core ra-
dius ρ(f) ∼ f1/6 decreases with a decrease in f more
slowly than the overall radius of the star R(f) ∼ f1/3 so

that transition to the quasi-neutral behavior occurs when
the number of branches f is decreased. These features
are demonstrated in the diagram of states presented in
Figure 3a. The regions I and II of the diagram correspond
to the star dominated by Coulomb interactions unscreened
in regime I and partially screened by trapped counteri-
ons in regime II. Region III corresponds to the star domi-
nated by non-electrostatic interactions between uncharged
monomers (so-called quasi-neutral regime).

4 Polyelectrolyte star in salt-added solution

Up to now we considered only salt-free solution of poly-
electrolyte stars, where the screening of electrostatic in-
teractions was performed by the conterions that ensure
the electroneutrality of the solution. In the limit of dilute
solution, the average concentration of counterions is too
small to provide screening of the Coulomb interactions on
the scale of order of the star size [7]. We have seen how-
ever, that if the number of branches in a star is sufficiently
large, i.e., f � f∗, then the distribution of counterions
in the solution becomes essentially non-uniform. Namely,
most of the counterions are trapped inside the stars while
the concentration of counterions in the inter-star regions
is considerably smaller than the average value. This is a
manifestation of the nonlinear screening effect in the so-
lution of strongly branched polyelectrolytes.

Let us turn now to the case when 1:1 electrolyte, e.g.
simple low molecular weight salt, is added to the solu-
tion of charged star polymers. We still consider a di-
lute solution of stars where the average concentration of
charged monomers is much smaller than the concentra-
tion of added salt. In this situation, the Debye screening
length κ−1

s in the bulk of the solution is determined by
the concentration cs of added salt via the conventional
relationship

κ2
s
∼= lBcs.

It is convenient to start the analysis of the salt effect from
polyelectrolyte stars with a large number of branches,
f � f∗ (i.e., the osmotic stars).

As we have discussed in Section 3, the many-arm star
polyelectrolytes retain most of their counterions in the
intra-star space even in a dilute salt-free solution. The
average concentration of the counterions trapped inside
the osmotic star is given by

ci ∼= αfN/R3(f) ∼= fN−2α−1/2a−3. (10)

An additional screening of intra-star Coulomb repulsion
by the salt ions becomes important when the concentra-
tion cs of added salt exceeds the internal concentration ci
of counterions in the osmotic star, or, equivalently, when
the screening length κ−1

s in the bulk of the solution be-
comes smaller than the “intrinsic” screening length κ−1

i .
At cs � ci the screening inside the star is dominated by
salt ions and we refer to this regime as to the salt domi-
nated regime.

Because of the electroneutrality condition, the average
concentration of counterions in the volume occupied by
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the star polyion is always larger than their concentration
cs in the bulk of the solution while the average concen-
tration of co-ions inside the star is smaller than cs. The
stretching force produced by screened Coulomb repulsion
between the charged branches is proportional to the differ-
ence in the osmotic pressure of co- and counterions inside
and outside the star. This force determines the swelling of
the star branches and can be obtained by employing the
local electroneutrality condition inside the star,

αc+ c− = c+ (11)

(here the star branches are assumed to be charged nega-
tively) and the Donnan rule for the distribution of co- and
counterions

c−/cb− = cb+/c+ (12)

where c+, cb+ and c−, cb− are the concentrations of cations
and anions inside the star, and in the bulk of the solution,
respectively. The concentrations of co- and counterions in
the bulk of the solution are equal, i.e. cb− = cb+ = cs.
The differential osmotic pressure is given by

∆π/kT =
∑
j

(cj − cbj) ∼=


αc αc�

∑
j cbj

α2c2/
∑
j cbj αc�

∑
j cbj

(13)

where in case of 1:1 added electrolyte
∑
j cbj = 2cs.

In the salt dominance regime (i.e., at cs � ci ∼= αc),
this differential osmotic pressure at the edge of the star is
given by

∆π/kBT ∼= α2c2(R)c−1
s

where the monomer concentration c(R) is proportional to
the average monomer concentration in the star fN/R3.
By balancing the total stretching force, ∆πR2, with the
elastic force, −∂Fconf/∂R, (where the conformational free
energy Fconf (R) is still defined by Eq. (2)) we obtain the
overall size of the star in the salt dominance regime

Rs(f) ∼= N3/5f1/5α2/5(csa
3)−1/5a. (14)

As follows from equation (14), the addition of salt (an
increase in cs) leads to gradual deswelling of the polyelec-
trolyte star because of screening of the Coulomb repul-
sion between the charged branches. The screened Coulomb
repulsion provides the same exponents for the molecular
weight and the number of arms dependence of the star size
as the short-range, excluded volume interactions under the
good solvent conditions, equation (1). Equation (14) can
be interpreted in terms of swelling of a polyelectrolyte
star due to electrostatic excluded volume interactions,

Rs(f) ∼= N3/5f1/5v
1/5
effa, with the corresponding effective

second virial coefficient veff ∼= α2(csa
3)−1. It is remark-

able that the size of the osmotic (f � f∗) star in the
salt-free solution, equation (5), can be formally obtained
in the same way by setting veff ∼= α2(cia

3)−1.
The crossover between equations (5, 14) corresponding

to the onset of the salt-induced contraction of the star, oc-
curs at cs ∼= ci ∼ f , i.e. when the salt concentration in

the bulk of the solution becomes of the order of the coun-
terion concentration inside the osmotic star. The latter
is proportional to the number of branches, f . Hence, the
larger is the number of branches in the star, the higher salt
concentration is required to affect the star conformation.

4.1 Blob picture

In order to give insight to the intrinsic structure of the
polyelectrolyte star in the salt dominance regime, we apply
the condition of local balance of the differential osmotic
force,

∆π(r)r2/fkBT ∼= α2c2(r)r2/fcs

and the local tension t(r)/kBT in the star arms. As each
arm exhibits locally Gaussian statistics, this local tension
is proportional to the ratio of the radial elongation dr of
the part dn of the arm, i.e. t(r)/kBT ∼= dr/dn. Under the
condition of equal stretching of all the arms in the star, the
local tension is related to the local monomer concentration
via the equation

dr

dn
∼=

fa3

r2c(r)
· (15)

As a result, we obtain the monomer density profile

c(r) ∼= f2/3(α−2cs)
1/3a−2(r/a)−4/3 (16)

and the radial dependence of the blob size which is in-
versely proportional to the local tension in the branches,

ξs(r) ∼= (fα2)−1/3c1/3s (r/a)2/3. (17)

Equations (16, 17) can be obtained by using a differ-
ent argument, i.e. by employing the concept of Debye
screening length, κ−1

s . At small distances from the star
center r, where κ−1

s > κ−1
i (r), the internal star struc-

ture is not affected by added salt. Here, one finds the
core of radius ρ(f) defined by equation (9) consisting
of increasing θ-blobs surrounded by the strings of elec-
trostatic blobs of size α−1/2a, see previous section. At
r � rs(f) ∼= f1/2α1/4κ−1

s , the electrostatic interactions
between the branches are screened on a scale larger than
κ−1
s . Here, the concentration of salt ions exceeds that of

the counterions and screening is goverened by the salt.
The dependence

rs(f) ∼= (fα1/2c−1
s a−3)1/2a (18)

is determined by the equality of the local concentration
of counterions, αc(rs), in the osmotic star and the salt
concentration, cs, in the bulk solution.

Applying the same argument as in Section 3, we find
that at r � rs, only f∗s = fκ−2

s /r2 branches contribute to
the unscreened electrostatic interaction within the screen-
ing volume κ−3

s . It is remarkable, that f∗s ∼ r−2, i.e. in
contrast to f∗, f∗s decreases with increases in r, because
κs = const(r). Each branch contributes a segment of n(r)
monomers to the screening volume κ−3

s . By balancing the
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electrostatic force ∼ lBf∗s (αn)2/κ−2
s with the elastic force

∼ κ−1
s /na2 (per branch) we find for the local tension in the

branch t(r)/kBT ∼= κ−1
s /na2 ∼= α2/3f1/3c

−1/3
s (r/a)2/3.

Correspondingly, we arrive at equation (17) for the size of
electrostatic blob and to equation (16) for polymer profile.

The above picture holds in the range of r where f∗s > 1.
At r ∼= r∗ ∼= f1/2κ−1

s , we have f∗s
∼= 1, while the dis-

tance between the branches equals κ−1
s . Here, the size of

electrostatic blob, ξs(r), becomes equal to that in an indi-
vidual polyelectrolyte chain, ξ0 ∼= α−2/3(lB/a)−1/3a [17].
In other words, ξ0 equals to the size of the largest seg-
ment of the polyelectrolyte chain which remains unper-
turbed by Coulomb repulsion of charged monomers and
retains Gaussian statistics. On the scales larger than ξ0
(but smaller than κ−1

s ) Coulomb repulsion results in ex-
tension of a polyelectrolyte chain in a string of ξ0-blobs.

At distances r ≥ r∗ from the center, the local struc-
ture of each branch coincides with that of an individ-
ual polyelectrolyte chain, i.e., is determined by the intra-
chain Coulomb repulsion and is unaffected by salt unless
κ−1
s � ξ0. The branches in this outer region constitute

strings of electrostatic blobs of size ξ0 on scales below
κ−1
s , while at larger scales, they are envisioned as flexible

chains with renormalized units of size κ−1
s . These units

interact with each other with the second virial coefficient
(∼ κ−3

s ), i.e., the renormalized chains exhibit the excluded
volume statistics. As a result, we arrive at the same de-
pendence (16) for the polymer profile at r � r∗ and at
the dependence (14) for the star size.

Intrinsically, the polyelectrolyte star in a salt-added
solution can be envisioned as consisting of a few concentric
regions, Figure 2b.

In the inner region, 0 < r < ρ(f), the star structure is
dominated by the short-range non-electrostatic repulsions
between the uncharged monomers; the radius ρ(f) of the
inner region is still determined by equation (9); the closely
packed blob structure, ξ(r) ∼= f−1/2r, and the monomer
density profile c(r) ∼ r−1 in this region are the same as
in a neutral star.

In the intermediate region, ρ(f) < r < rs(f), the lo-
cal extension of branches is determined by the screened
Coulomb repulsion, but the local concentration of coun-
terions is much larger than the concentration of salt in
the bulk of the solution; the screening of Coulomb in-
teractions is dominated by counterions. The branches in
this region are uniformly extended and consist of blobs of
constant size, ξ ∼= α−1/2a, each containing one charged
monomer; the monomer density decreases as c(r) ∼ r−2,
equation (7).

At rs < r < r∗, the screening is dominated by the salt
ions. Here, the size of electrostatic blob increases accord-
ing to equation (17) due to screening of the inter-branch
repulsion.

Finally, at r � r∗, the size of electrostatic blob is de-
termined totally by the intra-branch interactions between
the charges, and it stays constant, ξ ∼= ξ0, unless κ−1

s ≤ ξ0.
As the salt concentration cs in the bulk of the solu-

tion increases, the boundary rs gets shifted towards the
center of the star: the salt penetrates into the star and

the width of the salt-dominated region (r > rs) increases
while the intermediate “osmotic” region shrinks (we re-
mind that the size ρ(f) of the θ-core remains virtually
unaffected by an increase in the salt concentration). The
extension of branches in the outer region and size of the
star as a whole decrease according to equation (14) as well.

At cs ∼= α3/2a−3, the crossover rs(f) ∼= ρ(f) (where
the radius ρ(f) of the core is still determined by equa-
tion (9)) occurs, and the intermediate “osmotic” region
disappears.

At larger salt concentrations, α3/2a−3 � cs �
α4/3a−3, the star consists of the inner, θ-core dominated
by short-range repulsion of uncharged monomers and the
outer region dominated by screening by salt Coulomb re-
pulsion between charged monomers, Figure 2c. The radius
of the θ-core in this salt dominance regime is defined as

ρs(f) ∼= f1/2α−2csa
4. (19)

This relationship is obtained by equating the sizes of a
θ-blob, ξc ∼= r/f1/2, and the electrostatic blob determined
by equation (17). The outer, salt dominated region of the
star (r > ρs) consists of a sublayer of growing electro-
static blobs (r ≤ r∗) and the sublayer with constant blob
size (ξ0) at r ≥ r∗. As the salt concentration continues
to increase, the Coulomb repulsion gets more and more
screened, resulting in a decrease in the extension of the
outer parts of branches (and in the star size as a whole)
and simultaneously in an increase of the radius of the
θ-core, equation (19).

At cs ∼= α4/3a−3, the crossover ρs(f) ∼= r∗, occurs and
the sublayer of growing blobs disappears. Here, the salt-
controlled screening length κ−1

s becomes equal to the ξ0,
and at higher salt concentrations, the electrostatic blob is
disrupted. Now, the interactions between monomers are
described as the short-range binary repulsions between
charged units. The corresponding second virial coefficient
is v ∼= α2/csa

3. The outer part of the star swells equiva-
lently to a neutral star in a good solvent. The boundary
between the swollen part of the star and the θ-core is de-
termined by the condition of swelling of a θ-blob, to give
the above expression for ρs(f).

Eventually, at cs ∼= α2f−1/4N1/2a−3 the crossover
ρs(f) ∼= Rs(f) occurs. At higher salt concentrations, the
Coulomb repulsion is strongly screened all over the star
which acquires the conformation of a neutral star poly-
mer under θ-conditions. Here, the size of the star is given
by equation (1).

The picture of salt-induced contraction of a polyelec-
trolyte star with a small number of branches, f � f∗,
is slightly different from that described above. At low
salt content, κ−1

s � R(f), as well as in a salt-free so-
lution the intra-star Coulomb repulsion is not screened
and the star conformation (described in Sect. 2) is not
affected by this small amount of added salt. The screen-
ing effect of salt inside the star becomes important at
κ−1
s ≤ R(f) corresponding to the salt concentration cs ≥
N−2f−2/3α−4/3(lB/a)−5/3a−3. At κ−1

s � R(f), the star
is locally electroneutral so that the stretching force applied
to the branches is proportional to the differential osmotic
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pressure and the overall star size is described by equa-
tion (14). Intrinsically, the star is again subdivided into
concentric regions. On the scale smaller than κ−1

s from
the center, screening effects are not important and the
structure of a nonscreened star in a salt-free solution is
retained. Here, the star consists of the θ-core of the radius
ρ(f) defined by equation (9) surrounded by the corona
formed by uniformly extended branches, r > ρ(f). At the
larger distances from the center, κ−1

s < r < Rs(f), the
screening due to the added salt becomes important. Here,
at κ−1

s < r < r∗, the electrostatic blobs grow in size ac-
cording equation (17), while at r ≥ r∗, we have ξ ∼= ξ0.
With increase in salt concentration, the width, κ−1

s −ρ(f),
of the central region decreases because of the decrease in
κ−1
s at constant ρ(f). At cs ∼= α4/3f−1/3(lB/a)−1/3a−3,

the crossover κ−1
s
∼= ρ(f) occurs and the intermediate re-

gion (dominated by the unscreened Coulomb repulsion)
disappears. At larger salt concentrations, the structure of
the star becomes similar to that of a many-arm star de-
scribed above. Namely, further increases in the salt con-
centration result in an increase of the radius of the θ-core
and the simultaneous decrease of the extension of branches
in the outer region.

The diagram of states of a polyelectrolyte star in a salt
added solution (Fig. 3b) contains in addition to regions
I, II and III described already for the salt-free case the
region IV where screening of intra-star Coulomb repulsion
is governed by salt.

5 Effect of charge annealing
in polyelectrolyte stars

In previous sections we considered polyelectrolyte stars
with quenched regular distribution of the charged
monomers. In other words, we assumed the fraction of
charged monomers and their uniform distribution along
the branches of the star to be fixed and independent of
the external conditions. This model is applicable for a reg-
ular copolymer with a fraction α of strongly dissociating
monomers and a fraction (1− α) of neutral monomers.

Another important example of weakly charged poly-
electrolytes is weakly dissociating polyacids (or polybases)
in which all the monomers are capable of ionization,
but only a small fraction are actually ionized. The local
ionization-recombination balance, i.e. the average fraction
of ionized monomer units is determined by the ionization
constant, K, and by the local concentration of counteri-
ons cH+(r) (H+ ions in case of weak polyacid, which we
consider below) via the mass action law

α(r)

1− α(r)
=

K

cH+(r)
· (20)

The concentration cbH+ of H+-ions in the bulk of the so-
lution depends not only on the average concentration of
polyacidic stars, but can be also tuned by the variation of
the pH of the solution, and determines the degree of dis-
sociation of monomers of polyacid αb ∼= K/cbH+ � 1 in
the bulk of the solution. The last inequality corresponds
to the condition of weak ionization.

5.1 Annealed polyelectrolyte star in salt-free solution

As the concentration of counterions (H+ ions in case of
polyacid) inside the star is larger or much larger than
that in the bulk of the solution, the degree of ionization
of branches is equal to or smaller than αb ∼= K/cbH+ . The
former is the case for the stars with a small number of
branches f � f∗ ∼= α

−1/2
b (lB/a)−1, that are unable to re-

tain counterions. Average concentration of H+-ions inside
such stars is of the order of cbH+ . When the corresponding
Debye screening length κ−1

b
∼= (lBcbH+)−1/2 is much larger

than the star size [23], the Coulomb repulsion between the
branches is not screened, and the branches are extended
up to

R(f) ∼= Nα
2/3
b (lB/a)1/3f1/3a (21)

(compare Eq. (4)). An increase in the number of branches
does not result in a significant increase in the concentra-
tion of counterions inside the star. As a result, the degree
of ionization α stays virtually unaffected, i.e., α ∼= αb,
as long as the number of branches remains smaller than

f∗ ∼= α
−1/2
b (lB/a)−1. At f ≥ f∗, the counterions are

strongly attracted by the star polyion and most of them
do not leave the volume occupied by the star (see discus-
sion in Sect. 3). Each branch contributes αN counterions.
At the same time the size of the star in this “osmotic”
regime is virtually independent of the number of branches
or at least grows weaker than a power function of f . As
a result, we expect that at a large number of branches,
the counterion concentration cH+ inside the star exceeds
significantly the bulk value, cbH+ , giving rise to the recom-
bination process.

In order to estimate the number of branches f̃∗ in
the star corresponding to the onset of recombination we
have to compare the intra-star concentration of counte-
rions cH+ , equation (10), where the size of the osmotic
star R(f) ∼= Nα1/2a is calculated at α ∼= αb and the bulk
concentration of counterions cbH+ . The intra-star concen-
tration becomes larger than the bulk value at f � f̃∗

where

f̃∗ ∼= N2α
1/2
b cbH+

∼= N2α
−1/2
b Ka3. (22)

At f � f̃∗, the degree of ionization of the star is de-
termined by the intra-star concentration of counterions,
α ∼= K/cH+(α), which in turn depends on α via equa-
tion (10). After simple algebra we obtain the following
dependence for the average degree of dissociation

α(f) ∼= (Ka3N2f−1)2 (23)

and the overall star size

R(f) ∼= Nα1/2(f)a ∼= N3Ka4f−1. (24)

A remarkable consequence of equations (23, 24) is that the
average degree of ionization of the star branches decreases
with increasing f , that results, in turn, in the decrease of
the overall star size. This behavior is qualitatively opposite
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Fig. 4. The diagram of states of an annealed polyelec-
trolyte star in a salt-free solution in x = KN2a2lB , y =

f/f̃ coordinates; f̃ ∼= f∗(x = 1) ∼= c
1/2
b+ Nl

−1/2
B a2, u ∼=

cb+a
3N6/5(lB/a)3/5 ≤ 1; regions I′ and II′ correspond to

annealing unscreened and annealing osmotic regimes, respec-
tively, while the right boundary of the diagram is determined
by the condition αb ≤ 1.

to that described above for neutral or polyelectrolyte stars
with quenched charge. The similar effect of decrease in
the chain’s extension with increasing grafting density has
been predicted earlier for weak polyelectrolyte brushes of
different morphologies [20,24].

Equation (22) can be rewritten as f̃∗ ∼= f∗N2a2KlB
thus indicating that the onset of recombination occurs in
the osmotic regime (i.e. f̃∗ � f∗) only if the ionization
constant K is sufficiently large, N2Ka2lB � 1.

If the same condition, f ≥ f̃∗ ∼= f∗N2KlB, is applied
to define the onset of charge recombination in the star
with small ionization constant, namely, N2KlB � 1, we
come to a contradiction, f̃∗ � f∗. The underlying physics
as follows: at small values of ionization constants, the in-
trinsic concentration of counterions at the charge renor-
malization threshold, f ∼= f∗, appears to be sufficient to
induce recombination that in turn must reduce the bare
star charge below the threshold value required to retain
counterions inside, i.e. to induce the renormalization of
the star charge.

Therefore, in the frame of our scaling-type approach
we can claim that as the number of branches increases
over f∗, the recombination of charged monomers with
the counterions keeps the star at the threshold of charge
renormalization, i.e. the star size and the degree of ion-
ization are determined simultaneously by the condition
R(f) ∼= fNαlB and by any of equations (4) or (5).

As a result, we find that both the degree of ioniza-
tion and the star size decrease with increasing number of

Fig. 5. Schematic dependence of the size (a) and of the degree
of ionization (b) of an annealed polyelectrolyte star on the
number of branches f for KN2a2lB � 1, curve 1, and for
KN2a2lB � 1, curve 2.

branches f , (f � f∗), as

α(f) ∼= f−2(lB/a)−2 (25)

and

R(f) ∼= Nf−1(lB/a)−1a. (26)

It is remarkable that the exponents in the f -dependences
of the degree of ionization and of the star size in equa-
tions (25, 26) are the same as in equations (23, 24) re-
spectively.

Due to an additional variable (i.e., the degree of ion-
ization α) the overall behavior of the annealed stars
becomes more sophisticated than that of the quenched
stars. As a result, the diagrams of states of the annealed
stars become more varied. Figure 4 shows an example
of such a diagram for the particular range of parame-
ters, cb+a

3N6/5(lB/a)3/5 � 1, and Na � κ−1
b , while

Figure 5 shows the schematic dependences of the annealed
star size on the number of branches f for large values of
K (K � (N2a2lB)−1, curve 1) and small values of K
(K � (N2a2lB)−1, curve 2). In addition to regions I,
III, and IV described for the quenched charge case, the
diagram of annealed polyelectrolyte star contains regions
I′ and II′. The latter ones correspond to annealing un-
screened and annealing osmotic regimes, respectively.

As follows from the diagram, at small number of
branches, the degree of ionization of monomers in the star
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is the same as in the bulk of the solution, α ∼= αb. Here,
the usual unscreened star behavior is observed. In the op-
posite limit of large number of branches, the degree of ion-
ization is much smaller than αb, and the non-electrostatic
intramolecular interactions predominate over electrostatic
ones (quasi-neutral behavior).

The behaviour of the star at intermediate values of
f depends strongly on the value of the ionization con-
stant K.

In case of very weak polyelectrolyte,K � (N2a2lB)−1,
the recombination of counterions becomes important even
for the stars with the number of branches f ≥ f∗ ∼=
α
−1/2
b (lB/a)−1. With further increases in f , the recombi-

nation keeps the star at the charge renormalization thresh-
old.

The picture is different for strongly dissociating poly-
electrolyte stars, K � (N2a2lB)−1. In this case, an in-
crease in the number of branches brings the star into the
screened regime, R(f)κb � 1, before the recombination of
counterions becomes important. Further increase in f re-
sults in an increase of the concentration of counterions in-
side the star and finally reaches the recombination thresh-
old at f ∼= f∗N2Ka2lB. The star passes into the annealed
osmotic regime when the extension of branches decreases
with an increase in f because of massive recombination of
the counterions with the charged monomers.

At larger values of the bulk concentration of H+-
ions (lower pH range) or at larger N , we have
cb+a

3N6/5(lB/a)3/5 ≥ 1. Correspondingly, regions I′ and
II′ where recombination of charges is important disappear
from the diagram of states and the star behaves as if with
a quenched charge.

5.2 Blob picture

The intrinsic structure of annealed polyelectrolyte stars is
characterized by the profiles of polymer and the counte-
rion densities, the radial distribution of local tension in the
branches and, additionally, by the profile of local degree
of ionization of monomers.

At f � f̃∗, when the recombination of charges be-
comes important, all these distributions are determined
self-consistently. Since the star as a whole is found in the
osmotic regime, we can use the local force balance argu-
ment,

dr

dn
∼= α1/2(r)

and the local ionization balance argument,

α(r) ∼= K/cH+(r)

together with the condition of local electroneutrality

cH+(r) ∼= α(r)c(r)

where the monomer density profile c(r) and the local ten-
sion in the star arms dn/dr are interconnected by equa-
tion (15).

Fig. 6. The blob picture of a polyelectrolyte star with annealed
fraction of charged monomers in the annealing osmotic regime
(region II′ in the diagram of states, Fig. 4).

We remark that the same type of arguments were used
earlier in [20] for the analysis of the intrinsic structure of
annealed osmotic polyelectrolyte brushes.

As a result, we find

c(r) ∼= f4/3(Ka3)−1/3(r/a)−8/3a−3 (27)

α(r) ∼= f−2/3(Ka3)2/3(r/a)4/3 (28)

ξ(r) ∼= dn/dr ∼= f1/3(Ka3)−1/3(r/a)−2/3a (29)

cH+(r) ∼= f2/3(Ka3)1/3a−2(r/a)−4/3a−3. (30)

As follows from equations (27, 28, 29, 30), the intrinsic
structure of the annealing polyelectrolyte star in the os-
motic regime is qualitatively different from that of a star
with a quenched charge.

Because of the radial decrease in the concentration
of counterions, the local degree of ionization of branches
increases from the center to the periphery of the star,
α(r) ∼ r4/3. As a result, the local tension in the branches
simultaneously increases that is manifested in the radial
decrease of the blob size, ξ(r) ∼ r−2/3, The latter observa-
tion is in pronounced contrast to the size of blobs in neu-
tral and polyelectrolyte stars with quenched charge, Fig-
ure 2. As the branches get locally more extended with an
increase in r, the concentration of monomers decays more
rapidly, i.e., as c(r) ∼ r−8/3 (compare with c(r) ∼ r−2

dependence in quenched polyelectrolyte stars where the
branches are uniformly extended).

The blob picture of the osmotic annealed polyelec-
trolyte star is presented in Figure 6. The most striking fea-
ture of the blob structure is the nonmonotonic dependence
of the blob size on the distance from the center of the star:
in the inner θ-core region, 0 < r < ρa(f), the blobs grow
with r while in the osmotic region, ρa(f) < r < R(f), de-
scribed by equations (27–30), the blob size decreases with
increases in r as described by equation (29). The radius
ρa(f) of the inner θ-core in the annealed polyelectrolyte
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star defined by the crossover between the monomer den-
sity or the blob size profiles, is given by

ρa(f) ∼= f1/2(Ka3)−1/5a. (31)

With increasing number of branches f the size of the
θ-core increases, while extension of branches in the corona
region decreases (Eq. (24)), and the star as a whole ap-
proaches the quasi-neutral regime.

5.3 Effect of added salt on the annealed
polyelectrolyte star conformation

The addition of 1:1 salt to the solution of weak polyacid
stars results in the screening of Coulomb repulsion be-
tween charged branches. If the concentration of H+-ions
inside the star is comparable to its bulk value, cbH+ , then
the degree of ionization of the star branches is equal to
αb. In this case, the size of the star decreases with an in-
crease in salt concentration just as in the case of polyelec-
trolyte stars with quenched fraction of charged monomers
described in Section 4. However, qualitatively opposite ef-
fect of added salt is expected for weak polyacid stars with
large number f � f∗N2Ka2lB of branches. In these star
polyelectrolytes, the intrinsic concentration of counterions
is much larger than that in the bulk solution. The addi-
tion of salt results in progressive substitution of H+ -ions
inside the star by the salt cations that leads to a decrease
in the intrinsic concentration of H+-ions. As a result, the
recombination-dissociation balance gets shifted and the
degree of ionization of the star branches increases thus
giving rise to the star swelling as the ionic strength of the
bulk solution increases.

In order to describe the effect of salt on the degree of
ionization, we combine the mass action law, equation (20),
with the local electroneutrality condition inside the star,
equation (11), and the Donnan rule, equation (12), for
the distribution all species of co- and counterions, where
now c− =

∑
j− cj− and c+ =

∑
j+ cj+ and cj+, cbj+ and

cj−, cbj− are the concentrations of cations (H+- and s+-

ions) and anions (OH−- and s−-ions) inside the star and in
the bulk of the solution, respectively. The relation cbs− =
cbs+ = cs still applies.

As a result, we obtain the equation for the degree of
ionization,

α ∼= α
1/2
b (

cbs+ + cbH+

c
)1/2, (32)

which is valid at cbs+ + cbH+ � αc, i.e. in the annealing
osmotic regime. In the opposite limit, the degree of ion-
ization of the star branches coincides with the bulk value,
α ∼= αb. Equation (32) must be coupled to the relation-
ship between the monomer concentration and the degree
of ionization in the osmotic star, c ∼= fN−2α−3/2a−3. As
a result, we get

α(f, cs) ∼= α2
bN

4f−2(cbs+ + cbH+)2a6 (33)

and the star size scales as

R(f, cs) ∼= Naα1/2(f, cs) ∼= N3αbf
−1(cbs+ + cbH+)a4

∼= N3f−1(αbcs +K)a4. (34)

Hence, at given concentration of H+-ions in the bulk of
the solution, cbH+ , the size of the star grows linearly
with increasing cs due to the substitution of H+-ions by
s+-ions and corresponding additional ionization of the
star branches. The effect becomes more pronounced at
cs � cbH+ . We remind the reader that this effect of ab-
normal swelling of a polyelectrolyte star caused by an in-
crease in the ionic strength of the solution takes place
only at relatively low salt concentration cs, when the to-
tal concentration of all types of counterions in the bulk of
the solution remains much smaller than their concentra-
tion inside the osmotic star. As cs becomes comparable to
αc, the degree of ionization α(f, cs) reaches the bulk value
αb, and further increase in cs results in screening of elec-
trostatic interactions and in deswelling of the star accord-
ing to equation (14). Hence, the star dimension depends
non-monotonically on cs passing through the maximum
at cs ∼= fN−2α−2

b a−3.

6 Discussion and conclusions

In this paper, we have analyzed the conformations of weak
star-branched polyelectrolytes in dilute solution as a func-
tion of the number of branches f and of the salt concen-
tration cs.

The most important feature of many-arm polyelec-
trolyte stars in a dilute salt-free solution is essentially
non-uniform distribution of the counterions. Most of them
are localized preferentially (almost completely at large f)
inside the stars. Hence, the local concentration ci of coun-
terions in the region occupied by a star polyion is much
larger than their average concentration in the solution.
As a result, the intra-star Coulomb repulsion between the
charged monomers is strongly screened even in a dulite
regime.

The effect of the ionic strength of the solution (tuned
by the addition of low molecular weight salt) is different
for weakly charged polyelectrolyte stars with a quenched
fraction of strongly dissociating monomers (like PSSNa at
low degree of sulphonation) and for weakly dissociating
branched polyacids (or polybases).

An addition of salt to the solution of strongly branched
quenched polyelectrolyte stars does not affect (up to a cer-
tain level) their conformation. Only when the bulk salt
concentration exceeds the intrinsic concentration of the
counterions, ci, a noticeable deswelling of the star due to
additional screening of the Coulomb repulsion between the
charged branches can be observed. The greater the num-
ber of branches in a star, the higher the characteristic salt
concentration required to induce the polyelectrolyte star
contraction.

This conclusion is in agreement with recent exper-
imental results of J. Mays, who employed the photon
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correlation spectroscopy method [25] to measure the hy-
drodynamic radii of star-branched potassium polystyrene-
sulphonates (the number of branches was varied from 13
to 18) as a function of the ionic strength of the solution.
In these experiments, the degree of sulphonation which
determines the fraction of charged monomers was suffi-
ciently high (close to 1). According to our analysis, such
stars retain extension of their branches in a wider range
of salt concentrations than the linear polyelectrolytes. The
experiments of J. Mays, indeed, demonstrated relative in-
sensitivity of the many-arm polyelectrolyte stars to an in-
crease in the ionic strength of the solution in comparison
to the corresponding linear polyelectrolytes.

Our results indicate that the addition of salt to the so-
lution induces the rearrangement of the intrinsic structure
of star-branched polyelectrolytes. We have shown that ir-
respective of the ionic strength of the solution, the cen-
tral region (the θ-core) of the star is dominated by the
non-electrostatic short-range repulsion between the un-
charged monomers, and is envisioned as a system of closely
packed concentration blobs. This dense central region is
surrounded by Coulomb repulsion (or due to osmotic pres-
sure of counterions) swollen corona and this corona deter-
mines the size of the star as a whole.

In a salt-free solution, the branches in the corona are
extended uniformly and can be described as strings of elas-
tic Pincus blobs of equal size; these blobs are not closely
packed!

With increases in salt concentration, the salt ions pen-
etrate preferentially into the sparse peripherical region of
the corona and screen the electrostatic interactions there.
The radial decay of the monomer density, c(r), in this re-
gion is described by the same exponent as in a neutral star
with the short-range excluded volume interactions (under
good solvent conditions). However, in contrast to neutral
stars, the elastic blobs in partially screened polyelectrolyte
stars are not closely packed.

At the first stage of the salt-induced contraction, an
increase in cs and penetration of salt in the star results
in shrinking of the intermediate region characterized by
the uniform extension of branches but does not affect the
radius of the θ-core. At higher salt concentrations, corre-
sponding to the second stage of the contraction, the radius
of the θ-core increases simultaneously with a decrease in
the size of the corona.

In both cases, the overall size R of the star is
governed by the outer part of the corona, R(f, cs) =
N3/5α2/5f1/5(csa

3)−1/5a. We note that our results on
salted stars are essentially different from the results of
Dann and Tirrell [26]. Those authors considered the case
of strongly charged, α ∼= 1, polyelectrolyte chains grafted
to a planar and also to a spherical surface in a salt domi-
nance regime. In the latter case, one could expect an expo-
nent in the dependence of the grafted chain size, R, on the
salt concentration cs, similar to that found for the poly-
electrolyte stars. However, there is a major discrepancy
between our results and the findings in reference [26]. Our

model predicts R(f, cs) proportional to c
−1/5
s , whereas the

model of Dann and Tirrell gives R proportional to c
−2/5
s .

The difference in the exponents has several sources. First
of all, the authors of reference [26] focused on strongly
charged polyelectrolytes where direct interactions between
the charges on the chain provide the electrostatic stiffen-
ing of polyelectrolyte. The dependence of the electrostatic
persistence length, Le, on salt concentration still remains
a “hot” point at the moment. The popular predictions
Le ∼ κ−2

s [27] versus Le ∼ κ−1
s [28] are still under inten-

sive discussion. Whereas the former one is proved to be ap-
plicable to strongly charged and/or intrinsically stiff poly-
electrolytes, the latter seems to be more appropriate for
flexible, weakly charged polylectrolytes. The results of our
model can be reformulated in terms of electrostatic per-
sistence length scaling as Le ∼ κ−1

s (see our previous work
[22]). Authors of [26] employed the dependence L ∼ κ−2

s

to incorporate electrostatic effects into their model. They
envisioned polyelectrolyte chain as consisting of stiff seg-
ments of length ∼ Le and thickness a, and utilized the re-
sults of a scaling model for neutral semi-flexible polymer
brushes. However, they did not take into account the im-
portant fact that electrostatic interactions renormalize not
only the length of the segment, Le ∼ κ−2

s but the thick-
ness of the segment as well. Namely, instead of monomer
size a, the thickness of stiff segment becomes ∼ κ−1

s . Cor-
respondingly, the excluded volume statistics changes, and

instead of the dependence R ∼ c
−2/5
s obtained by Dan

and Tirrel one gets R ∼ c
−3/10
s . The latter dependence

is expected for strongly charged polyelectrolyte stars in a
salt dominance regime.

In case of weakly dissociating (annealed) polyelectrolyte
stars the effect of added salt is essentially different from
that in the quenched case. Small concentrations of salt
induce additional swelling of the star. The origin of this
effect is the shift of the ionization-recombination balance
inside the star and the corresponding increase in the frac-
tion of charged monomers. As the salt concentration in-
creases beyond a certain level, the degree of dissociation
reaches its maximal (i.e., bulk) value, and the screening
effect of salt becomes dominant resulting in deswelling of
the star. Hence, the dependence of the weakly dissociating
polyelectrolyte star on the ionic strength of the solution
appears to be nonmonotonic and exhibits a maximum.

The intrinsic structure of weakly dissociating polyelec-
trolyte star is characterized by nonmonotonic dependence
of the local tension in the star branches and of the elastic
blobs size on the distance from the center of the star. The
blob size increases with r in the central θ-core region, but
decreases in the peripheric, osmotic region due to an in-
crease in the local degree of dissociation (and in the local
tension) with increasing distance from the center.

The experimental probe of the salt-induced structural
changes in the polyelectrolyte stars could be performed by
using SANS methods.
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tention to experimental results on branched polyelectrolytes.
O.V. Borisov appreciates the hospitality of Prof. G. Fleer
and Prof. M. Cohen Stuart in the University of Wageningen
and the NWO research grant. E.B. Zhulina acknowledges the



O.V. Borisov and E.B. Zhulina: The effects of ionic strength on star polyelectrolytes 217

hospitality of Prof. A.C. Balazs at the University of Pittsburgh
(USA). This work was partially supported by NWO Dutch-
Russian program for Agricultural and Food Research.

References

1. F. Oosawa, Polyelectrolytes (Dekker, NY, 1971).
2. J.-L. Barrat, J.-F. Joanny, Advances in Chemical Physics

94, edited by I. Prigogine, S.A. Rice (John Wiley, 1996).
3. A.L. Lehninger, Biochemistry (Worth Publishers, Inc., NY,

1979).
4. J.F. Marko, Y. Rabin, Macromol. 25, 1503 (1992).
5. J. Wittmer, J.F. Joanny, Macromol. 26, 2691 (1993).
6. P. Guenoun, S. Lipsky, J.W. Mays, M. Tirrel, Langmuir

12, 1425 (1996); P. Guenoun, H.T. Davis, M. Tirrel, J.W.
Mays, Macromol. 29, 3965 (1996); P. Guenoun, Delsanti,
D. Gazeau, J.W. Mays, D.C. Cook, M. Tirrel, L. Auvray,
Eur. Phys. J. B 1, 77 (1998).

7. O.V. Borisov, J. Phys. II France 6, 1 (1996).
8. P. Pincus, Macromol. 24, 2912 (1991); R. Ross, P. Pincus,

ibid. 25, 1503 (1992).
9. O.V. Borisov, T.M. Birshtein, E.B. Zhulina, J. Phys. II

France 1, 521 (1991); in Modern Problems of Physical
Chemistry of Macromolecules (Cent. Bio. Res., Puschino,
USSR, 1991), p. 85.

10. S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, P.
Pincus, D. Hone, J. Chem. Phys. 80, 5776 (1984).

11. M. Daoud, J.P. Cotton, J. Phys. France 43, 531 (1982).

12. E.B. Zhulina, Polym. Sci. USSR 26, 794 (1984).
13. T.M. Birshtein, E.B. Zhulina, Polymer 25, 1453 (1984).
14. T.M. Birshtein, E.B. Zhulina, O.V. Borisov, Polymer 27,

1078 (1986).
15. E.B. Zhulina, O.V. Borisov, T.M. Birshtein, Polym. Sci.

USSR 30, 780 (1988); E.B. Zhulina, O.V. Borisov, V.A.
Pryamitsyn, T.M. Birshtein, Macromol. 24, 140 (1991).

16. P.-G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, 1979).

17. P.-G. de Gennes, P. Pincus, R.M. Velasco, F. Brochard, J.
Phys. France 37, 1461 (1976).

18. O.V. Borisov, E.B. Zhulina, J. Phys. II France 7, 449
(1997).

19. P. Pincus, Macromol. 10, 210 (1977).
20. E.B. Zhulina, O.V. Borisov, Macromol. 29, 2618 (1996).
21. E.B. Zhulina, O.V. Borisov, T.M. Birshtein, J. Phys. II

France 2, 63 (1992).
22. O.V. Borisov, E.B. Zhulina, T.M. Birshtein, Macromol. 27,

4795 (1994).
23. The latter relation is valid at neutral or low pH that will

be the case in our analysis.
24. E.B. Zhulina, T.M. Birshtein, O.V. Borisov, Macromol. 28,

1491 (1995).
25. J.W. Mays, Polymer Commun. 31, 170 (1990).
26. N. Dan, M. Tirrel, Macromol. 26, 4310 (1993).
27. T. Odijk, J. Polym. Sci. 15, 477 (1977); J. Skolnick, M.

Fixman, Macromol. 10, 944 (1977); A.R. Khokhlov, K.A.
Khachaturian, Polymer 23, 1742 (1982).

28. J.-L. Barrat, J.-F. Joanny, Europhys. Lett. 24, 333 (1993).


